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Some aspects concerning the self-consistent reaction field theory of solvent 
effects are discussed. In particular, the variational solution to the non-linear 
Schr6dinger equation is considered; a necessary and sufficient constraint to be 
added to the standard variational procedure is discussed. The exact solution 
of the non-linear equation is presented within the molecular orbital approach; 
correlation defaults to the Hartree-Fock like solutions are stated. Some 
thermodynamical correspondences are established with the magnitudes 
calculated with the self-consistent reaction field theory. Finally, we have 
commented upon the proton potentials calculated within this theory. An 
INDO calculation of a water trimer has been used as an example to discuss 
different types of proton translocation potentials. 
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I. Introduction 

The self-consistent reaction field (SCRF) theory of solvent effects [1] leads to a 
non-linear Schr6dinger equation that represents the solute in a polarizable medium. 
Recently, a similar theory [2] has been proposed to describe a dipolar system 
inside a globular protein. Several applications to the study of environmental 
effects upon H-bonded systems [2-5] have been published. However, the papers 
published so far have not given any details concerning the molecular orbital (MO) 
formalism used to solve the non-linear equation. But continued work has made 
the author aware of the fact that clarifications and developments concerning the 
whole formalism may be desirable. 

The first remark concerns the application of the variational principle and cor- 
responding calculus to obtain an exact or an approximate solution of the non-linear 
Schr6dinger equation. The problems discussed have a wider scope; they are related 
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to the variational solutions of the so-called Htickel self-consistent methods [6]. 
The discussion of these topics forms Sect. 2. 

The well established MO formalism [7] as it is applied to obtain the exact wave- 
function and energy of the ground electronic state is introduced in Sect. 3. There, 
some of the new features concerning the SCRF theory are discussed. The energy 
expressions used to obtain the previous numerical results are more explicitly re- 
defined. Within this theory it is possible to calculate the electronic energy E of 
the molecule subjected to the surrounding medium effect, together with the total 
energy e which corresponds to E plus the energy necessary to polarize the 
environment. 

The total energy e turns out to be the electrostatic contribution to the internal 
energy of the whole system. In Sect. 4 some further thermodynamical analogies 
are discussed. They illustrate the double character of the SCRF theory. This 
double character is related to the statistical mechanical nature of the reaction field 
and to the quantummechanical description of the solute molecule (or system of 
interest). 

Sect. 5 closes the paper; therein an INDO-MO [8] study ofa  tetrahedrally arranged 
water trimer is presented. The study illustrates the difference between the E and 
the e proton potentials. 

2. Variational Solution of the Non-Linear Schr~dinger Equation 

The SCRF theory of solvent effects on dipolar systems replaces the standard 
electronic Schr6dinger equation 

Ho~= E(Q)~ (1) 

where H o is the electronic Hamiltonian, E and ~ the energy eigenvalue and 
eigenfunction, by the non-linear equation 

[H  o - p . 0 .  (Tl~lr)]r = H[I~]T= E(Q)T; (2) 

Q stands for the set of nuclear coordinates; p is the total electric dipole moment 
operator: 

P= ~ ZkQk-- ~ 'i (3) 
k = l  i = 1  

where Vi and Qk are respectively the position vector operators of the i'th electron 
and k'th nucleus, Z k being the charge of the latter. T represents the molecular 
wave function in the medium; therefore, it should contain the polarization 
effects of that medium. The coupling between the molecular system of interest 
and the polarizable medium is given by the reaction field R, 

R(/~) = ~. (/~[p[/~) = 0. M(/~) (4) 

This field is produced by the surrounding medium which was polarized by the 
molecular dipole electric field; the tensor ~ represents a reaction field sus- 
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ceptibility. If  the surrounding medium is inhomogeneous, a finite electric field 
produced by the molecular multipoles in the medium should be added [2]. 
From (3) and (4) it is seen that, in fact, the reaction field depends on the first 
order density matrix associated to T. A number of procedures are based upon a 
variational solution of either (1) or (2). For the linear case, cf. Eq. (1), the Euler- 
Lagrange equation derived from the variational principle is the corresponding 
Schr6dinger equation [9], provided that the variation is allowed within the 
whole relevant Hilbert space. A different result is obtained once the variational 
calculus is applied to the functional 

< #,lI-ZE golr  > / < r (5) 

This functional has the standard form used for the linear case. Consider a 
variational wave function ~ such that 

~=T+gq5 (6) 

where e is a positive, otherwise arbitrary, real number, 4~ belongs to a family of 
variational functions orthogonal to T, this later being the exact wave function of 
(2). We first expand H [ ~ ]  around the exact wave function up to terms of first 
order in e, 

H [ ~ ]  = H[T] + H'[I']eqa + 0(~ z) (7) 

where H ' [ / ' ]  is the first Fr6chet derivative [10] of H [ ~ ]  taken at r .  For the 
Hamiltonian used in (2) one has : 

H'Eie] -- - ~/,. (~bl.~. t, lr> (8) 

The transition-like integral (q~l.0"/~l/'> will be referred to as R(q~,/o). The first 
variation of R(~) is written as 

fiR = 2g Re{R(qS, ]o)} (9) 

The first variation of d is therefore given by 

aS= 2~ Re {(~blH[/'] - J(/')IT> - M(T). R(#a. T)} (10) 

where Lr is taken normalized to unity. 

Thus, unlike the linear case, the stationary value of (5) at q5 =/~, i.e., 3J(T)= 0 
does not lead to (2), but to a different Euler-Lagrange equation, unless ie fulfils the 
condition 

2~ Re {M(r). R(~, r)} -- o (l l)  

This is therefore a necessary condition for the variational functional (5) to lead 
to the proper solution of (2). This condition is also a sufficient condition. This 
statement can be proved using the functional forms of Ref. El]. The MO theory 
requires a variational solution of (5) with a trial wave function ~ satisfying some 
shape restriction, such as being a single-determinant wave function. Assume that 
/~ is the one of such functions that leads to a stationary value of (5). Replacement 
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of/" by T in the preceding formulas leads to 

b J =  2e Re {(q~lH[/~] - J (~)~)  - M(~). R(q~, 2~)} = 0 (12) 

where q~ is now orthogonal to/~. Therefore, if the approximate wave function 
is going to be a solution of a non-linear Schr6dinger equation similar to (2), i.e., 

H[T]F = Jr ~ (13) 

Then a condition analogous to (11) must be fulfilled. It follows now that (11) with 
/~ instead of T is a necessary condition to be satisfied by the approximate solutions 
to (2). As was already stated this condition is also a sufficient one. In fact (11) may 
be recast to read 

�89 6(R((a). M(q~)) I ~ =/~ = 0 (14) 

where, for the sake of simplicity, real functions are assumed throughout. Now, 
one assumes that (14) is fulfilled. Furthermore, one has 

6(~ I ~ ) = 0  (15) 

and using the method of undefined Lagrange multipliers the functional 

Jl(q~) = (q~lH[q~][q~) -2(q~ I q~) +~' R(q~)-M(~) (16) 

leads to (13) once 2' is taken as 1. For an energy origin defined by J(/~)=0, 2 is 
given by 

2--/~+�89162 .M(~) (17) 

2 represents the total value of the molecular electronic energy in the medium and 
the energy spent to polarize the medium. It should be noticed that 2 itself may 
be taken as a variational functional although it is not the expectation value of any 
Hamiltonian. The 2-functional has been used by some authors in connection 
with Onsager's approximation to the reaction field [11, 12]. 

The discussion presented so far may also be applied to any non-linear operator 
which is a function of the first-order density matrix. This is the case of the self- 
consistent Hiickel molecular orbital method [16, 13]. Here the effective Hamil- 
tonian depends upon the wave function through the charge distribution. Iterative 
extended HiJckel methods also belong to this class of effective Hamiltonians. 
Therefore, according to the preceding scheme, once the linear variational 
technique is applied to minimize the energy functional an equation analogous to 
(12) will be obtained. This was first pointed out by F. Harris but he missed the 
restriction to be imposed to build up an adequate variational functional (c.f. 
Eq. (16)). The secular equation derived in this manner is bound to misrepresent 
the problem that one wants to solve. Moreover, in some other cases it would 
lead to finding difficulties with either interpretation of the parameters [6] or with 
convergence of the iterative procedure [15]. Some of these problems have been 
discussed by Sanhueza et al. [16] ; the reader is referred to this work for further 
details. 
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3. Exact Energy and Wave Function, MO-Approach 

3.1. The SCRF MO Formalism 

For the sake of simplicity we consider a closed-shell non-degenerate electronic 
state of a system having n = 2m electrons. Assume that a basic set of one-electron 
functions exists (i.e., the molecular orbitals). Hence a n-electron determinantal 
wave function can be built up out of the m MO's of lower energy taken twice, 
first with the ~ and then with the fl spin function. 

Once the variational principle is applied to the energy expectation value 
< ~ I H [ ~ ] ] ~ ) ,  subjected to the normalization and dipole moment restrictions, a 
set of Hartree-Fock (HF)-like equations for the MO's is obtained, 

[fo(q ~) + ~'" O" M(q~)] ~b k =f~k = ek~bk �9 (18) 

f0 is the conventional HF  operator; ~b k and ek stand for the k'th MO and its 
corresponding energy [8, 9]. 

In principle (18) provides a complete set of MO's. By assumption the set o fm MO's 
having the lower orbital energy is non-degenerate. 

Eq. (18) can be solved either by ab initio or semiempirical or approximate pro- 
cedures. Usually the linear combination of atomic orbitals (LCAO) approximation 
is made to represent the MO's. 

Since both f0 and M depend on the set of m MO's of lower energy, in practice (18) 
is solved iteratively until a prescribed numerical threshold is attained. The 
solutions obtained thereby will be referred to as SCRFMO's,  whatever the actual 
numerical technique used might be. The determinantal wave function so obtained 
will be designed by ~/SCRF" 

For the MO's belonging to the lowest energy configuration, (18) describes the 
electron orbital motion subjected to the nuclei-electron potential and the averaged 
effect of the remaining n -  1 electrons plus the simultaneous polarization field 
produced by the SCRFMO dipole moment (M(~bSCRv)=MscRF). 

Therefore, once the self-consistency threshold has been attained, most of the 
surrounding medium polarization effects, derived from the reaction field, are 
implicitly included in the MO's as well as explicitly in the orbital energies. 

However, as is well known, the independent particle approach, and in particular 
the one described so far, fails to incorporate the instantaneous correlation inter- 
actions between the electrons. Since we have taken up the supermolecule approach 
to study the intermolecular interactions, neglecting the instantaneous correlations 
amounts to leaving the London-van der Waals dispersion interaction out of the 
scheme. Moreover, the correlation default of 'the wave function may also affect 
the SCRF MO dipole moment and therefore, errors in the energy calculated 
with it may be important. 

To recover the London-van der Waals effects and allow for the correlation 
default to the dipole moment (Me), one should go beyond the single particle 
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model. In the following paragraph an exact scheme starting from the one given 
here is developed. 

3.2. The Exact Wave Function and Energy 

Starting from the basis set {~bk} of eigenfunctions of (18) any selection ofn functions 
q~k,, q~k2 . . . . .  q~k, with K1 < K z < " "  <K.  is called an ordered configuration K, 
and it can be shown that any antisymmetric wave function ~ may be expanded 
in terms of Slater determinants (ffK) over such configurations. In comparison 
to the Slater determinant ~scRv over the occupied one-electron functions q~l, 
~b z . . . . .  ~b, (fundamental configuration), the various configurations which may 
be described as singly-, doubly- . . . ,  n-excited; ~ ,  ~ ,  etc., are the corresponding 
Slater determinants derived by replacement of q~k, q~kq~l out of the fundamental 
configuration by respectively q~, ~b~b~, of the orthogonal complement. The exact 
wavefunction may now be written as [7] 

~/~- ~/SCRF "~ ~1 "~- ~2 "~ " " " qt-~n (19) 

C~ Ok, ~2 = Z k l ~  etc. ; and the C's are coefficients to be where ~1 =Zk,2 2 2. t~2~,tt2~ ~-~kl~l'kl~ 

determined, either with a variational approach (the method of configuration 
interaction) or with a perturbative scheme. 

The wave function (19) fulfills the intermediate normalization condition 

(~Sc, Fl~) = (q'SCRFIq~sCRF) = 1 (20) 

the total energy E is obtained from (1), (11), (12) and (13) 

E =  @SCRFIH01q~SCRV> + (r V1r -MscRv" g" M (21) 

where V is the bielectronic Coulomb repulsion operator appearing in H o [7]. 

The first two terms of (21) are similar to those appearing in the conventional 
theory [7]. Therefore, when an interacting pair of molecules is treated as a 
supermolecule, interpretation in terms of the theory of intermolecular interactions 
is possible. Since this general scheme is used to study H-bonded systems, a summary 
of the intermolecular theory interpretation of (21) is given below. 

The expectation value of H o with respect to SSCRF essentially contains the electro- 
static permanent multipole interaction and the inductive effects, as well as the 
charge transfer, overlap, and exchange interactions. Moreover, if the charge 
density is suitably represented by $SCRF, the Pauli repulsive forces between 
interacting closed shell molecules (ions) are embodied there. The second term 
(IPSCRF[ VllP2 ) takes care of the correlation effects from which the London-van der 
Waals forces are derived. More detailed analysis can be found elsewhere (7, 17, 18). 
The interaction energy between the model dipole moment and the exact reaction 
field forms the third term of (21). In this formalism there is no self-consistency 
associated with the exact reaction field. The dominant central role is played by 
Mscg F in (21). In fact (1) has been transformed into a new non-linear Schr6dinger 
equation for the SCRF approximate wave function. The corresponding energy 
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expectation value 

ESCRF = (~/SCRF[H[I#SCRF] IOSCRF), (22) 

can be obtained once (18) has converged. 

The exact energy can be written as a sum of a SCRF energy plus electron 
correlation corrections. Besides the electron-electron dynamic correlation one 
finds a correction associated with the correlation default to the SCRF dipole 
moment. Writing M=MscRF + M  c formula (21) can be recast to read 

E = ESCRF + (I~SCRF[ V I ~/2 > -- MSCRF" 0" Mc (23) 

This formula shows the difference between the standard self-consistent field (SCF) 
energy and the corresponding SCRF one. ESCRF is an upper bound to (q '  IHo [q~ ) 
[7], while ESCRF, due to the linear term in Me, does not necessarily share that 
property. In particular, one should be sufficiently cautious in selecting the actual 
calculational scheme. Thus in order for it to be useful, it must provide good dipole 
moments; otherwise, the error introduced by only considering ESCRF will depend 
linearly on the correlation default to the SCRF dipole moment. 

4. SCRF Theory and Thermodynamics Correlates 

4.1. Electrostatic Contribution to the Internal Energy 

The effective Hamiltonian HET] (H[~bSCRF]) represents the molecule under the 
effect of the polarization field 0.M(0.MscRF ). In fact, the molecular system 
corresponds to an open system in a thermodynamical sense. The polarization 
term derives from the potential produced by the molecules (or charge distribution 
representing molecular groups [2-]) in the medium at a given point p. Let it be 
denoted by Vext(p). For an electrically neutral system the Taylor expansion of 
Vex t around a given origin inside the molecular system of interest leads to the 
following interaction operator: 

n + m  

H'= ~ (6Vext/6Pi)o.pi=- ~ (6V~xt/6Ti)o.Ti+ ~, (3V~xt/~Qk)oZkQk (24) 
i=  l i=  l k =  l 

where terms of higher than linear order have been neglected. For all i, k the 
partial derivatives are equivalent to a constant electric field acting at the chosen 
origin F(0). Therefore, the interaction operator becomes -/~. F(0), a form similar 
to the one appearing in (2). Within the theoretical framework developed up to 
now [1, 2], the statistical averaging of F(0) over the medium configurations leads 
to the appearance of a reaction field. In order for this to be so, it is implied in the 
argument that the medium has already been polarized by the system of interest. 
The work necessary to perform this polarization amounts to +�89 This 
result may be derived from a virtual charging process whereby the dipole moment 
is changed reversibly from zero to its full value [19]. 

Therefore, if there are N dipolar systems in the sample, and the degrees of freedom 
of the medium besides those associated with the polarization process are not 
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changed during the charging process, the energy e(9), defined by: 

e (9 ) /N= E + �89 9 . M (25) 

represents the electrostatic contribution to the internal energy of the whole 
system; each dipolar system is taken at a fixed but otherwise arbitrary orientation 
with respect to a laboratory frame. 

Eq. (25) may be recast to read 

e(O)/N= [Escg v + �89 v "0" MSCRF ] + (~tSCRF [ V[~/2 } ~-�89 .O.Mc (26) 

This equation shows that e(9) contrary to E is quadratic in Me; the term in square 
brackets define eSCRF. 

When e(9) is used as an energy functional in the variational calculation, the 
correct Euler equation comes out from the first variation. Nevertheless, one 
should remember that e(9) is a magnitude associated to the whole system, while 
E describes the energy of the polarizing system only. The information which may 
be obtained from these quantities is necessarily different. This situation is further 
discussed in Sect. 5. 

4.2. Other Thermodynamic Correlates 

The free energy variation associated with the charging process at constant volume 
(V) and temperature (T),  is given by [20] 

A G(9) = G(~3) - G(O) = - �89  9" M (27) 

It follows that the internal energy variation is 

A U(9) = U(9) - U(O) = - T A S - � 8 9  9" M (28) 

where A S  is the corresponding change in entropy. 

Now, according to (25) the internal energy variation for the assembling of N 
dipoles will be: A~ =e (9 ) -  e(0). From (2) and (25) the following equation may 
be written for Ae: 

Ae= N { (I"IHolI~) - (TolnolTo> } - � 8 9  . M (29) 

where T O is the eigenfunction of H 0 corresponding to its ground state. In principle 
(28) and (29) represent the same process and should be correlated. Since the term 
in curly brackets in (29) is always positive by the variational principle, it follows 
that the entropy variation is negative. The presence of a dipole moment increases 
the order around it, therefore the entropy associated to the setting up of a reaction 
field is decreased. The result is entirely consistent with the physical picture 
associated to the polarization process [1]. 
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5. E- and e-Proton Potentials. A Numerical Comparison 

The E- or e-energy as a function of  the proton coordinate is referred to as an 
E- or e-proton potential. It is not necessarily the potential driving the actual 
proton motion since there may be non-equilibrium medium polarization effects 
involved [213. 

There exists a fundamental difference between both potentials. The E-potential 
would drive the proton motion whenever there exists an external source providing 
the polarization work needed to set up the reaction field. In the absence of  this 
latter, the proton motion should be driven by the e-potential, and the E-proton 
potential would inform about a possible intrinsic behaviour of the molecular 
system coupled to the environment. Therefore, such potentials have only 
qualitative value. On the other hand, if quantitative information is sought, for 
instance the variation of the equilibrium or the rate constant with the ~ coupling 
between the system and the medium, the e-energy values have to be used. 

5.1. Model and Method 

To illustrate the different shapes of  both types of potential, and the information 
obtained therefrom, we have chosen a hydrogen-bonded water trimer arranged 
tetrahedrally. The geometry and the proton paths are indicated in Fig. 1. 

H 

H 

2.0 

1.0 

~.._ 4_ [P 

I / 11 ~713 
I /  / 

liB 2 

1. 2 ~1 
(b) 

Fig. la and b. (a) Geometrical setup of the water trimer studied. The O...O' distance between the 
nearest neighbors is of 2.75 .&, and the frozen O-H distances are taken equal to 1.04 A. (b) Different 
pathways of the proton displacements in the trimer 

The standard linear combination of valence atomic orbitals approximation to 
the MO's has been used. The corresponding matrix elements o f f 0  have been 
evaluated within the INDO approximation scheme [8]; the matrix elements 
associated with the operator ~ in this basis set are given in Table 1. In what follows 
only the energy quantities calculated at the SCRF level are discussed. While 
the introduction of the second order perturbation energy produces some changes 
in the potential curves, the overall trend is nevertheless retained [3], 
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T a M e  1. Matrix elements of  the position vector operator appearing in the LCAO approximation to 
the self-consistent reaction field theory of  solvent effects within the ZDO approximation. The s, p, 
and d orbitals are those used in the INDO version of  Pople 
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Four proton paths have been chosen. Channels 1 and 2 represent proton trans- 
location between nearest neighbor water molecules. They can be depicted as: 

channel 1: H20..-H20--.H20 ~ ~ H20--.H30 § O H - ;  

channel2: H20...H20...H20 ~ > H30 + OH-..-H20. 

The corresponding proton potentials are plotted in Fig. 2. Channels 3 and 4 
correspond to ion migration, both channels ending at the same point. They are 
depicted by: 

channel3: H20.-.H30 + OH-+----~ H30 + H20 O H - ;  

channel4: Ha O+ OH-.--H20 ( ~ Ha O+ H20 OH- .  

The corresponding proton potentials are displayed in Fig. 3. As in other works 
reported by us, a scalar y-tensor is used in practical calculations. The g-value is 
chosen so that it produces a relatively high reaction field strength (RFS) for 
the H-bonded complex H20.--H20...H20. For this particular case the RFS 
attains a value of 1.52 Volt/A. This strength may be too high for ice or liquid 
water, but the example chosen here could better be considered as representative 
of a more general class of proton relay systems [4, 5]. 
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Fig. 3. Potential energy curves correspond- 
ing to an ion migration process. The energy 
terms are defined in the text 
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5.2. Numerical Results. Discussion 

If  there were an external source to provide the polarization work, as discussed 
above the E-potential would be the relevant potential. In this case, as Fig. 1 shows, 
the charge displacement process leads to the formation of  a stable ion pair 
structure. Energetically, the process where the hydroxyl ion is H-bonded to a 
water molecule (channel 2) is favoured over the process where the hydronium 
ion is in a corresponding situation (channel 1). Once channels 3 and 4 are con- 
sidered, the minima associated with the ion pair structures turn out to be saddle 
points of  the E-hypersurface. The ion migration processes appear to be energetically 
favoured. 

On the other hand, for the isolated system the e-potentials have to be used to 
describe the proton energetics. In this case Fig. 1 shows that the H-bonded 
complex is always the most stable structure. The charge displacement process 
under this circumstance requires a considerable energy. But once an ion pair is 
formed, it is associated with a saddle like point where this time it is the ion 
migration process that has associated with it a small energy barrier (see channels 
3 and 4). 

Between these extremes the actual production of  spatial charge displacement 
might be a process assisted by external sources like external electric fields. We 
have already shown the striking effects produced by a homogeneous electric 
field upon both the E- [4] and e- [5] proton potentials. 

It is believed that this simple numerical example illustrates sufficiently well the 
extreme points about  which a proton potential may vary. Both produce a sort of  
complementary information. In the cases already studied by us, almost always 
the E-proton potentials were reported [3, 4]. In fact, in those papers the model 
studied represented systems subjected to external sources like charged ions in the 
vicinity or fields produced by biomembranes, etc. Thus, the qualitative information 
produced by the E-potentials was adequate. 

Finally we would comment about the simultaneous proton pathway. As our 
previous study shows this channel presents a high energy barrier (see Ref. [4]), 
and therefore it seems likely that the actual process of proton translocation will 
follow the undecoupled channels. 
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